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ABSTRACT 

The subject of the research in this article is the logic circuit of the combined finite state 

machine (CFSM), which combines the functions of the both FSM Mealy and Moore. In 

practice, such a model of control automata is used widely, but in the literature there is 

almost no theoretical description CFSM models and ways to optimize them. The article 

considers the problem of optimizing the logic of the combined finite state machine 

implemented in complex programmable logic devices (CPLD) basis. The CFSM circuit 

using programmable array logic (PAL) macrocells is implemented. The number of 

CPLD components, required to implement the logic of the automaton circuit, depends 

on the CFSM parameters and characteristics of element basis. Obviously, the reduction 

of necessary number of components leads to a decrease area occupied CFSM scheme in 

CPLD, thereby leads to reducing the hardware amount and power consumption in the 

circuit, and as result, increases the efficiency of the whole project. To solve the problem 

of CFSM optimization for a criterion of hardware expenses in this article it’s proposed 

to use the structural features of the basis CPLD, as well as the method of 

pseudoequivalent states. The FSM states are defined as a pseudoequivalent, if they mark 

some vertices linked with the input of the same next vertex in flow-chart. The proposed 

method includes the following steps: forming a plurality of CFSM states; encoding of 

states; forming a set of classes pseudoequivalent states; formation PALer blocks and 

tables; implementation of the CFSM scheme in a given element basis, such as CPLD. 

As a result, it’s possible to reduce the necessary number of PAL macro cells for 

implementing CFSM circuit in CPLD. The general result is a decreasing of in the total 

area of CFSM circuit on a chip. The advisability conditions of this method are 

discussed. 

 

Keywords: combined FSM, CPLD, PAL, pseudoeguivalent states. 

INTRODUCTION 

Today, the use of programmable logic integrated circuits and very large scale 

integrated (VLSI) circuits is a common practice in the production of electronics in a 

wide variety of industries. The use of modern VLSI, such as CPLD (complex 

programmable logic devices) and FPGA (field programmable gate array) in the design 

of any complex digital devices, including embedded systems, provides a gain in size, 

power consumption and functionality of the final product in comparison with the use of 

not only standard logic chips, but also microcontrollers, microprocessors, signal 

processors. This article considers CPLD, on the basis of which the problem of synthesis 

and optimization of a control device logic circuit, that is an important part of almost any 
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digital system (Baranov, 2008; De Micheli, 1994), is solved. Any digital device can be 

structurally divided into a control part and an executive part, i.e. control and operational 

automaton. In this case, the operating machine provides the actual processing of 

information according to a given algorithm, and the control automaton just ensures the 

order of operation of the operating part in strict accordance with this algorithm. 

At present, when designing complex digital devices, the model of a combined 

control automaton is widely used, which functions both as a Mealy and Moore finite 

state machines (FSM) (Solovyov & Klimovich, 2008; Czerwinski & Kania, 2013). In 

practice, the need for such a combined model is explained by the complexity and variety 

of functions performed by modern digital systems. However, theoretical materials 

devoted to the design and optimization of logic circuits of combined FSM (CFSM) are 

practically absent among the publications. This explains the interest of the authors of 

the article to the topic of optimization of CFSM. The control unit in the form of a 

combined finite state machine, implemented on the basis of CPLD, ensures the 

performance of all the necessary functions for solving the tasks at moderate material 

costs. Let us point out that CPLD-based circuits are very popular for implementing 

control units (Czerwinski & Kania, 2013; Barkalov, Titarenko & Chmielewski, 2007). 

The actual scientific and practical problem of optimizing the CFSM scheme by 

the criterion of hardware costs is considered, namely, at the cost minimizing of the 

CPLD chips used in the implementation (Sklyarov, Sklyarova, Barkalov & Titarenko, 

2014; Sklyarova, Sklyarov & Sudnitson, 2012). As a rule, the solution of this problem 

allows decreasing the consumed power and increasing the FSM performance 

(Sklyarova, Sklyarov & Sudnitson, 2012). Methods of this problem`s solution depend 

strongly on peculiarities of both an FSM model and logic elements used for 

implementing an FSM circuit (Solovyov & Klimovich, 2008; Czerwinski & Kania, 

2013). 

The basis of the CPLD structure is the macrocell PAL or PLA, which depends 

on the manufacturer. The cost of the chip depends on the number of these macrocells 

inside the CPLD. Thus, the aim of the research is to reduce the number of internal 

macrocells of the PAL type required for the implementation of the SMPA logic circuit. 

The optimization method proposed in the article is a continuation of the earlier 

proposed methods by the authors for other hardware bases. This article represents a 

development of FPGA-based design methods (Barkalov, Titarenko, & Zelenjova, 2015; 

Barkalov, Zelenjova & Hrushko, 2015) for the case of CPLD-based CFSMs. 

The method is based on the use of pseudoequivalent states in the automaton 

graph. The FSM states are defined as a pseudoequivalent, if they mark some vertices 

linked with the input of the same next vertex in flow-chart. The proposed method 

includes the following steps: forming a plurality of CFSM states; encoding of states; 

forming a set of classes pseudoequivalent states; formation PALer blocks and tables; 

implementation of the CFSM scheme in a given element basis, such as CPLD. 

Application of the proposed method makes it possible to reduce the required number of 

macrocells by almost half, thereby achieving the goal of reducing costs when 

implementing the device circuit. 

SPECIFICS OF CFSM AND CPLD 

The main specific of CFSM is existence of two types of output variables 

(Baranov, 2008). There is a set     including output variables of Mealy FSM. The set 
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    includes output variables of Moore FSM. The set           is a set of output 

variables of CFSM, where        ,   
      and N1+N2 = N. 

The CFSM can be represented as the vector (Baranov, 2008): 

 S = <A, X,   ,  ,δ,   ,   ,   > (1) 

 

In (1) there are the following components: A=          is a set of internal states; 

X=          is a set of input variables; δ is a transition function;    is an output 

function of Mealy FSM;    is an output function of Moore FSM;    is an initial state, 

   ϵ A . We can define the functions δ,    and    as the following: 

 

    = δ(  ,X),  where       ϵ A;  (2) 

   =   (  , X), where    ϵ    ; (3) 

   =   (  ), where    ϵ   . (4) 

 

The function δ determines the state of transition    ϵ A as a function of the 

current state    ϵ A and input variables X. As follows from (3), outputs of Mealy FSM 

depend on current states and inputs. As follows from (4), outputs of Moore FSM depend 

only on current states. 

Different nature of function (3) and (4) allows using the optimization methods of 

both Mealy and Moore FSMs for optimizing the circuit of CFSM. It is the main 

peculiarity of CFSM. 

CPLD includes PAL macrocells (Altera documentation, 2017; Xilinx browse 

documentation, 2017). Each macrocell can be viewed as q programmable AND gates 

having S inputs. The AND gates are connected with OR gate. The OR output can be 

either connected with D flip-flop or not. A flip-flop has inputs of synchronization 

(Clock) and clearing (Start). Therefore, it is possible to get either combinational or 

registered output of a macrocell. Moreover macrosells are connected through the matrix 

of programmable interconnections. This matrix also connect marocells with input-

output blocks.  

The main CPLD specific is a rather small value of q (q ≤ 8). It leads to disjoint 

minimization of Boolean functions representing CFSM circuit  (Czerwinski & Kania, 

2013; Barkalov, Titarenko & Chmielewski, 2007). The main aim of minimization is to 

decrease the number of terms in Boolean functions. 

In this article we propose one of possible methods for solving this problem. We 

use a graph-scheme of algorithm (GSA) for representing of CFSM (Baranov, 2008). 

IMPLEMENTING CFSM USING GSA 

 There are some steps of design independent on logic elements. They are the 

following (Baranov, 2008): 

1. Marking initial GSA G by states. 

2. Encoding of states    ϵ A by binary codes K(  ) having R bits, where 

 

            . (5) 

 

3. Constructing direct structural table (DST) of FSM. 

4. Developing systems of Boolean functions corresponding to (2) – (4). 
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The special register RG, which includes R flip-flops, saves state codes. In this 

case of CPLD, the RG is distributed among the macrocells. Internal variables    ϵ T are 

used for representing the state codes, where            . 
Excitation functions    ϵ   can change the content of RG, where   

         . The variable    enters the D input of the r-th flip-flop of RG (          ). 
The following columns can be found in a DST of CFSM (Baranov, 2008):    is 

a current state; K(  ) is a code of state    ϵ A;    is a state of transition; K(  ) is a 

code of state    ϵ A;  Xh is an input signal determining the transition <am, as>; Yh
1
 is a 

set of output variables      
  produced during the transition <am, as>;  h  is a set of 

input memory functions    ϵ   equal to 1 to load the code K(  ) into RG; h is a number 

of transition (          ). Besides, there is output variables      
  produced in the state 

   ϵ A written in the column of current state. 

The following functions are developed during the step 4: 

 

 ȹ = ȹ(T, X); (6) 

    =   (T, X);  (7) 

    =   (T). (8) 

 

 System (6) determines the function (2), systems (7) and (8) determines the 

functions (3) and (4) correspondently. 

Let the symbol PALer be used for a circuit based on PALs. It follows from (6) 

and (7) that the functions (2) and (3) determine a circuit with inputs    ϵ X  and    ϵ T. 

Let us name this as PALer1. The function (8) corresponds to a circuit PALer2 having 

inputs    ϵ T. Also there is the distributed register RG in the PALer1. Thus, there are the 

inputs Clock and Start entering the PALer1. The systems (6) – (8) determine the 

structural diagram of CFSM U1 (Fig. 1). Let us point out the state variables    ϵ T are 

the outputs of the PALer1. 

 

PALer1 PALer2

Start Clock

T

X
YY1

τ 

Fig. 1. Structural diagram of CFSM U1 

 

Functions (6) – (7) depend on conjunctive terms Fh corresponding to lines of 

DST. Each term is determined as 

 

 Fh = Am⋅Xh, (          ).  (9) 

 

In (9) the symbol    stands for a conjunction of variables    ϵ T corresponding to the 

state    ϵ A from the h-th line of DST. The function (8) depends on the terms    

(           ). 
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 As a rule, different methods of state assignment are used for optimizing 

functions    ϵ   and         (De Micheli, 1994).  In this article we propose a method 

based on existence of pseudoequivalent states (PES) of Moore FSM (Yang, 1991).  

 

 

THE PROPOSED DESIGN METHOD 

States (     ) ϵ A are PES if correspond to operator vertices of GSA G which 

outputs are connected with the same vertex of GSA (Sklyarov, Sklyarova, Barkalov & 

Titarenko, 2014). This definition allows constructing a partition              on the 

set A. Each element of    is a class of the PES. 

Let us encode states    ϵ A in such a way that each class         corresponds to 

minimal possible number of generalized intervals of R-dimensional Boolean space. 

These intervals can be viewed as codes       of the classes. It means that the same 

variables        are used for both K(  ) and       . 
So, in this article, we propose a CFSM U2 based on this approach for the state 

assignment. Let us point out that the desirable state assignment can be executed by the 

method JEDI from SIS (De Micheli, 1994). 

There are the same structural diagrams for U1 and U2. The difference between 

U1 and U2 is reduced to the formulae of terms Fh. In both cases the conjunction    is 

used in the terms: 

 

       
    

   , (           ). (10) 

 

In (10) lmr is a value of the r-th bit of the code K(  ). In the case of U1, lmr ϵ 

      and   
      ,   

       (          ). In the case of U2, lmr           , where   
     

(          ).  
This difference leads to decreasing the number of DST lines up to H1 in the case 

of U2. Conversely, it decreases the number of terms in functions (6) – (7) for U2 in 

comparison with the equivalent CFSM U1. Let us point out that U1 and U2 are 

equivalent if they are synthesized using the same GSA G. 

In this article we propose a method for synthesis CFSM U2. It includes the 

following steps: 

1. Marking initial GSA by the states of Moore FSM. 

2. Constructing the partition    on the set A. 

3. Executing the state assignment. 

4. Constructing the direct structure table of U2. 

5. Developing systems (6) – (8). 

6. Implementing CFSM circuit with given CPLD. 

Let us discuss this approach for the case of GSA G1 (Fig. 2). 

EXAMPLE OF SYNTHESIS 

The vertices of G1 are marked by the states of Moore FSM using the rules 

(Baranov, 2008). It is possible to find the following sets and their parameters from G1: 

A=         , M = 9, X=         , L = 4,             , N1 = 5,     
          , N2 = 5, N = 10. Let us point out that variables    ϵ    

are placed inside the 

vertices, whereas variables    ϵ    are shown above the edges of GSA G1. 
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Using the definition of PES, it is possible to find the partition A . In the 

discussed case, there is  },...,{= 41A BB  where B1 = {  }, B2 = {  }, B3 = {  ,…,   } 

and B4 = {  ,   ,   }. 

 

 

Start

y6 y7

x1

x3 x2

y8 y7 y9 - y7

x3

x4
y8 y10

y6 y7 y9

End

1 0

1 0 1 0

1 0

1 0

a1

a2

a3 a4 a5 a6

a7

a8 a9

a1

y1 y2

y2y5

y1y4

y3

y3y4

 
 

Fig. 2. Initial GSA G1  

 

To execute the state assignment, let us find dependence among Am,    and    ϵ 

  . It is represented by the following system: 

 

 B1 = A1; y6 = A2A8; 

 B2 = A2; y7 = A2A4A6A8; 

 B3 = A3A4A5A6; y8 = A3A7; (11) 

 B4 = A7A8A9; y9 = A4A9; 

  y10 = A7. 

 

First of all, the state assignment should be executed in such a way that functions 

B1 – B3 will be represented by single intervals. There are no transitions from        in 

DST of U2. So, we do not care about the code of   .Then if it is possible, each function 

   ϵ    should be represented by minimal amount of generalized intervals. The fist rule 

gets reducing the amount of terms in functions (6) – (7), the second in (8).  
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 Using (5) and M = 9, we can find R = 4. It gives the sets             and 

           . One of the possible variants of state assignment is shown in Fig. 3. 

 

T1T2

T3T4 00 01 11 10

00

01

11

10

a1 a9

a5

a7

a3 a6

* *

* *

a2 a8

a4

*

**

 
 

Fig. 3. State codes for CFSM U2 

 

 Using information (Fig. 3) and system (11), the following Boolean system can 

be found (after minimization): 

 

               ;      ;  

          ;              ; 

      ;                  ; (12) 

        ;       . 
 

 Analysis of (12) gives K(  ) = 0000, K(  ) = 11*0 and K(  ) = ***1. If    , 

it is enough 3 macrocells PAL for implementing the PALer2. There is no need in PALs 

for functions    and    . These functions are implemented by the PALer1 of U2. 

The DST of U2 is similar to the DST of U1. The only difference is: the columns 

am and K(am) are replaced by Bi and K(Bi), respectively. It is Table 1 in the discussed 

case. 

 

Table 1. Direct structure table of CFSM U2 

 

Bi K(Bi) as K(as) Xh Yh
1
   h h 

B1 0000 a2 1100 1 - D1 D2 1 

B2 11*0 a3 0001 x1 x3 y1 D4 2 

a4 1101 x1      - D1 D2 D4 3 

a5 0101       x2 y2 D2 D4 4 

a6 1001      ⋅       y3y4 D1D4 5 

B3 ***1 a7 0010 x3 y2y5 D3 6 

a8 1000      x4 y3 D1 7 

a9 0100      ⋅       y1y4 D2 8 

 

There is H1 = 8. In the case of equivalent U1 there is H = 14, the DST contains 

more lines, and more PALs are necessary for PALer1. In the discussed case there is 

H/HL=1,75. So, we should expect such a saving in PALs due to replacement U1 to U2. 

Of course, the economy depends on the value of q. 
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The DST is used for deriving the functions (6) – (7). In the discussed case, these 

systems are following: 

 

 D1 = F1F3F5F7;         ; 
 D2 = F1F3F4F8;         ; 
 D3 = F6 = T4;         ; (13) 

 D4 = F2F3F4F5 = T1T2;         ; 
       . 
 

Let it be S = 10, q = 3. In this case it is necessary 9 PALs for implementing the 

circuit of PALer1. As follows from (13), there is no need in PALs for implementing 

functions D3 and y5. 

So, it is necessary 12 PALs for implementing the circuit of U2 in the discussed 

case. Let us point out that this number can be diminished. As follows from (13), there is 

a mutual part F1F3 in functions D1 and D2. So, the circuit for D1 and D2 can be 

implemented as the following (Fig. 4). 

 

PAL1 PAL2

PAL3
T

T T

X X

X

Start

Clock

F1 V F2

Start

Clock

T1

T2

 
 

Fig. 4 Logic circuit for functions D1 and D2 

 

The PAL1 implements the disjunction F1F2. It is used by both PAL2 and 

PAL3. Outputs D1 and D2 are connected with D flip-flops. Because of it, pulses Start 

and Clock enter PAL2 and PAL3. 

To compare the circuits for U1 and U2 let consider the circuit of U1 for GSA G1. 

We use the same PALs with S = 10, q = 3 and the following state codes:       = 0000, 

      = 0001, …,       = 1000. It is necessary 26 PALs to implement the circuit of 

U1. So, our approach allows a two-fold reduction in the number of macrocells for given 

particular case.   

CONCLUTION 

In this work we propose a method for synthesis the combined FSM targeting 

CPLD with PAL macrocells. An FSM is specified by a GSA G. The method is based on 

using of the classes of pseudoequivalent states. 
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The proposed method allows diminishing for the number of terms in systems of 

input memory functions    ϵ   and output variables of Moore FSM. Due to using PES, 

the number of terms is the same as for equivalent Mealy FSM. 

It is possible to decrease the number of PALs using mutual parts of functions. 

This approach is similar to functional decomposition proposed in 1960
th

 (Baranov, 

2008). So, these “old” approaches can be used for optimization circuits with modern 

VLSI. 

There are two directions of our future research. The first is connected with 

complex FSMs having R+L>S. The second targets CPLD with macrocells based on 

PLAs (Czerwinski & Kania, 2013). Such macrosells are used in CPLD Cool RunnerII 

by Xilinx (Xilinx browse documentation, 2017). 
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