
International Journal of Software Engineering and Computer Systems (IJSECS)

ISSN: 2289-8522, Volume 3, pp. 43-70, February 2017

©Universiti Malaysia Pahang

DOI: http://dx.doi.org/10.15282/ijsecs.3.2017.4.0026

43

IDENTIFICATION AND QUANTIFICATION OF FACTORS AFFECTING

REUSABILITY OF OPEN SOURCE SOFTWARE IN REUSE-INTENSIVE

SOFTWARE DEVELOPMENT

Fazal-e-Amin1, Aized Amin Soofi2

1Department of Software Engineering

College of Computer and Information Sciences,

King Saud University, Riyadh, Saudi Arabia
2Department of Computer Science, Allama Iqbal Open University, Islamabad, Pakistan

e-mail: famin@ksu.edu.sa, aizedamin@yahoo.com

ABSTRACT

Open Source Software (OSS) is one of the emerging areas in software engineering.

Reuse of OSS is employed in reuse-intensive software development such as Component

Based Software Development and Software Product Lines. OSS is gaining the interest

of the software development community due to its enormous benefits. The context of

this study is the identification and quantification of factors affecting reusability of OSS

in reuse-intensive software development. The use of OSS in the systematic reuse of

software, such as in Software Product Lines (SPLs) is a new phenomenon. Therefore,

the aim of this study is to identify and quantify the factors affecting the reusability of

OSS in reuse-intensive software development, especially for SPLs. In this study, a

mixed methods based approach is employed to identify the factors affecting the

reusability of OSS. Interviews are conducted with experts in this field as the qualitative

part, followed by a survey, experiments and a statistical analysis. The factors identified

during the interviews are ranked by software engineers in a survey. Experiment is

conducted to assess the reusability of open source packages. The factors are validated

by conducting a statistical analysis of the results of the experiments. A set of nine

factors were identified as a result of the qualitative study. A model was formed on the

basis of the findings of interviews and a survey. It includes five factors. These were

statistically analyzed by applying the model to 77 open source packages. A set of nine

factors were identified as affecting reusability of OSS in a reuse-intensive development

environment. Five of them were validated at the code level. The statistical results show

a positive correlation between reusability and the identified factors.

Keywords: Open source software; software reusability; mixed method

INTRODUCTION

OSS is gaining the interest of the software engineering community due to its numerous

benefits. These benefits fall into different dimensions. One dimension is ‘financial

benefits’, which includes the reduction in maintenance cost (Niemi, Tuisku, Hameri, &

Curtin, 2009) and escape from vendor lock-in (Niemi, et al., 2009; Stafford, 2006). The

technical benefits of OSS include having a large number of developers and testers

Identification and quantification of factors affecting reusability of open source software in reuse-intensive software development

44

(Kenwood, 2001; Krishnamurthy, 2003) and the lessening of maintenance risk (F. v. d.

Linden, Lundell, & Marttiin, 2009). Other benefits include user support from the

community (Krishnamurthy, 2003), encouraging innovation (Howe, 2000; Wheeler,

2005) and increased collaboration (P. J. Ågerfalk, Deverell, Fitzgerald, & Morgan,

2005), which are multifaceted advantages of OSS. These may be seen from the social

aspect or from the financial aspect. The things which contribute to the popularity of

OSS may also include the availability of increased bandwidth, search facilities, and

tools such as Code Conjurer (Hummel, Janjic, & Atkinson, 2008). The growth of the

Internet is also one of the things that has had a huge impact on the way software is

developed, marketed, and supported (Wasserman, 2011). The use of OSS in CBSD is

already a norm in the industry (Sommerville, 2007). Recently the researchers have

envisioned the use of OSS in SPL development (P. Ågerfalk et al., 2006; Ahmed,

Capretz, & Babar, 2008). So, OSS is entering into a new arena. Currently limited

knowledge is available in this research area. There is a need to explore the use of OSS

in reuse-intensive software development especially in SPL.

The disciplines of OSS, CBSD, and SPL share a common theme, namely

‘reusability’. A broader definition of reusability describes it as the “reapplication of

various kinds of knowledge about one system to another system in order to reduce the

effort of developing and maintaining that system” (Samadi, Almaeh, Wolfe, Olding, &

Isaac, 2004). OSS is developed to be reused and contributed to by numerous software

engineers.

The reuse-intensive software development methodologies such as CBSD and

SPL reuse software artefacts to develop new products. In CBSD, software components

are composed to develop software systems. In SPL software assets are ‘developed to

reuse’ and ‘reused for development’ (F. Linden, Schmid, & Rommes, 2007). The

concept of reusability is the central tenet in these areas. So, in the context of OSS based

development of CBSD /SPL it is important to assess the reusability of an asset.

Reusability assessment is recognized as a research area in software engineering (Frakes

& Kyo, 2005).

In (Frakes & Kyo, 2005), it is pointed out that reuse assessment is necessary to

make software reuse a scientific and engineering approach. Several attempts such as

(Boxall & Araban, 2004; Gui & Scott, 2007; Gui & Scott, 2008; Sharma, Grover, &

Kumar, 2009; Yoonjung, Sungwook, Houp, Jingoo, & SunHee, 2008) have been made

to assess the reusability of software assets. The collection and synthesis of these works

needs time. It will provide insight into the current state of the art and help to identify the

short comings which will pave the way forward. Following this the factors affecting

reusability of software will be identified. A reusability assessment model can be formed

to assess the reusability of a code asset. The importance of understanding and analysis

of code cannot be neglected. As the code base is increasing, the importance of its

analysis and manipulation is also increased (Harman, 2010).

As stated earlier, the nature of this study is exploratory. A review of current

approaches reveals that none of the approaches proposed considered the emerging

situation arising due to the combination of OSS and SPLs (Fazal-e-Amin, Ahmad Kamil

Mahmood, & Alan Oxley, 2011d). Reusability can be viewed as usability from the

perspective of the developer (Burgin, Lee, & Debnath, 2004). Usability is a subjective

phenomenon. An interview can be used to have an insight into the opinions of the

informants. In this study these concerns are undertaken and the interview is used as a

Fazal-e-Amin et.al /International Journal of Software Engineering and Computer Systems 3(2017) 43-70

45

tool to explore the phenomenon of reusability in reuse-intensive software development

and OSS.

Software reuse based development has become a standard in business and

commercial software development (Sommerville, 2007). Software reuse is commonly

employed in two ways, first by using component libraries, as in CBSD, and second in a

systematic way as in software product line development. This focuses on reuse intense

development. Software artefacts are developed, from existing artefacts, with the

intention of being reused. The product line development concept revolves around the

terms ‘commonality’ (the requirements which are common to family members) and

‘variability’ (the distinguishing requirements).

The three generic activities for using a component in CBSD are identification,

selection and adaptation of components (where this is necessary). In the past, the

decision to be made was to develop a component or to buy one. Now, with the

emergence of OSS, there is a third option (Höst, Oručević-Alagić, & Runeson, 2011).

During the selection of components, different criteria are used. These may include legal

aspects, such as license type or maintenance support for the component. In the context

of this paper, a particular criterion, the reusability of a component, is assessed to

facilitate the decision process.

RESEARCH METHODOLOGY

In this study, a mixed method approach is used to achieve the objectives. Mixed method

research is emerging as a third option for researchers in addition to qualitative and

quantitative research (Leech & Onwuegbuzie, 2009). Mixed method studies combine

the qualitative and quantitative approaches. (Tashakkori & Teddlie, 1998) comments on

mixed method studies: “These are studies that are the products of pragmatist paradigm

and that combine the qualitative and quantitative approaches within different phases of

the research process”.

Software engineering is a multidisciplinary field. It deals with social and

technological issues. A software engineering activity is not only based on the processes

and tools, but it also depends on the social and cognitive process around it (Easterbrook,

Singer, Storey, & Damian, 2008). Therefore, study of human activities is necessary to

understand a problem and its solution in the software engineering domain. The

aforementioned importance of human activities in the software engineering field

compels us to use the research methods of fields related to the study of human behavior.

In the software engineering field, opinions exist that suggest there should be a

combination of both qualitative and quantitative research methods in software

engineering research (Lazaro & Marcos, 2006). The authors also state that using a

combination of qualitative and quantitative methods may be beneficial in that it

provides information from a number of perspectives. The combination of qualitative

and quantitative approaches in a single study is referred to as a mixed method study.

An example of mixed method studies in software engineering can be found in

(Wood, Daly, Miller, & Roper, 1999), where an investigation of object orientation is

made using a survey questionnaire, a structured interview and controlled laboratory

experiments.

Identification and quantification of factors affecting reusability of open source software in reuse-intensive software development

46

Research Questions

Following research questions are answered in this study:

RQ1 – What are the factors affecting reusability of open source software in reuse-

intensive software development?

RQ2 – How to measure the factors affecting reusability?

RQ3 – What is the significance and nature of the relationship between reusability and

its identified factors?

Research Methods

The research methods used in this study are presented in the next sections.

Interview

The interview is a means of collecting primary data; it is a conversation between two

persons, one of whom is a researcher. Interviews can be used for data collection where

the nature of the study is exploratory. Interviews are helpful when the data to be

gathered is about a person’s knowledge, preferences, attitude or values (Gray, 2009).

Several types of interviews are reported in the literature (Punch, 2009). In this study, the

semi-structured type of interview is used.

Semi-structured interviews make use of both open-ended and specific questions.

This combination allows the researcher to explore the issues and to collect expected

information using specific questions while open-ended questions provide unforeseen

information.

Respondents’ Profiles

The research issues investigated in this study are of a specialized nature. Not everybody

working in industry or academia is able to answer the questions. The respondents

chosen for this study were based on their expertise. It should be noted that the

respondents have up to date information regarding the research and industrial practices

in this area.

The interviews were audio recorded and transcribed prior to performing the

analysis. The first respondent is a software engineering researcher and developer. He

has experience related to human computer interaction application development.

The second respondent is a researcher with a doctorate degree in software

engineering in the area of software product lines. He is an author of many publications

and book chapters, including those specifically targeting software product lines and

related issues.

The third respondent is an expert in software reuse research, and has been

authoring research papers on software reuse since the 1980s. He is actively participating

in research activities and is currently the editor of a publication in software engineering

published by a prestigious body. He is currently serving as principle software architect

in a well-known organization.

The fourth respondent started his career as a software engineer and was

promoted to software project manager during his career. He has managed projects in the

Fazal-e-Amin et.al /International Journal of Software Engineering and Computer Systems 3(2017) 43-70

47

domains of accounts, student information services, examination systems and a few

others involving automating small industries and NGOs.

The fifth respondent has worked in the domains of micro finance systems,

accounts systems, medical laboratory systems, visa systems, and billing systems.

Qualitative Analysis Coding Process

The content analysis approach is used in this study for the analysis of qualitative data.

Content analysis is a scientific tool which helps to understand the phenomenon. The

content analysis is a “research technique for making replicable and valid inferences

from the text (or other meaningful matter) to the contexts of their use” (Krippendorff,

2004).

The analysis is conducted following the approach presented in (Elo & Kyngäs,

2008) and (Hsieh & Shannon, 2005). The analysis process is started by generating the

transcriptions from the audio recorded interviews. These transcripts are read carefully to

extract the open codes (Elo & Kyngäs, 2008). The open coding process results in a list

of codes. The open coding process is performed by using atlas.ti software. In this paper

only one category i.e. factors affecting reusability is discussed, further details can be

found in (Fazal-e-Amin, Ahmad Kamil Mahmood, & Alan Oxley, 2011e).

Survey Population and Sampling Technique

The objective of software engineering research is to provide results which are useful for

the software industry. The selection of a population for a survey is one of the critical

decisions. In this study the target population consists of the individuals related to the

software development in Malaysia.

In this research, sample is collected using convenience sampling. The driving

force to make this decision is time and resource constraints. It’s a non-probability

sampling method. On contrary, the probability sampling method also requires the

identification of every individual in the population which is quite difficult in this case.

There are two common strategies to minimize the sample biasness in

convenience sampling. These include a clear description of sample collection process

and participants, and to ensure that sample is reasonably representative without any bias

(Gravetter & Forzano, 2011). Both of these remedies are applied in this research. It is

tried as much as possible during the data collection that data should be collected from

the representative population.

Identification and quantification of factors affecting reusability of open source software in reuse-intensive software development

48

Figure 1. Experience of Survey population

Table 1 Survey Details

Survey Details

Confidence level 95 %

Population 91410*

Sample size needed 383

Population Accessed 2707+

Sample size collected 396

Confidence interval 4.91

Percentage 50

Calculated using calculator

(www.surveysystem.com/scalc.htm)

*Population Estimation Source : (MSC Malaysia Supply-Demand

Study of ICT Industry)

Fazal-e-Amin et.al /International Journal of Software Engineering and Computer Systems 3(2017) 43-70

49

Statistical Analysis

In this study, the Pearson correlation coefficient, r, was used as a numerical measure

that assesses the strength of the linear relationship between two variables (‘reusability’

and ‘factor’).

In experiment, 77 packages were assessed for their reusability. The software was

downloaded from multiple sources which include Sourceforge (www.sourceforge.net),

Merobase (www.merobase.com), and FreashMeat (www.freshmeat.net).

Factors Affecting Reusability

The factors identified as affecting reusability are presented in this section. The factors

and corresponding quotes are presented in Table 2. Further definitions of factors and

metrics are presented in appendix.

Table 2. Identified factors and representative quotes

Factor

ID

Factor Name Representative Quote

F-1 Flexibility “Flexibility refers to the ability to use it in multiple

configurations”.

“In order to reuse some component source code it

should be flexible enough to be used in several

contexts”.

“Flexibility is necessary because there are changes

required with the passage of time, so it saves you not

to be bound”.

F-2 Maintainability “Maintainability is a large problem is such situations

when you use OSS and we are running the system

with connectivity with other systems so every time

there are some bugs and removing the bugs in others

code that is developed by some other is very difficult

for developer”.

F-3 Portability “Portability is also related to the install ability, it

should be taken care and portability should be

economical we don’t have to install other software to

run a component in other systems”.

F-4 Scope Coverage “That depends on the situation but normally we

choose the more coverage component as compare to

http://www.merobase.com/
http://www.freshmeat.net/

Identification and quantification of factors affecting reusability of open source software in reuse-intensive software development

50

the less covered one”.

“… it depends on the application if we want to extend

further our application then we will go for more

features”.

F-5 Stability “Stable meaning reasonably error free and it could be

used with confidence that there is no bug”.

F-6 Understandability “If I don’t understand it then I can’t show that it is

reliable and prove it to myself then I am not going to

use it”.

“Size can be managed but if it is not understandable

then it is difficult to reuse”

F-7 Usage History “Usage history also shows the maturity of the

component and how many people have used and made

changes to it”.

“In many cases open source software is used by many

people many engineers, already proven its

usefulness”.

F-8 Variability “Variability is a two edge sword in other words there

are advantages and disadvantages”.

F-9 Documentation “If there is lack of documentation then I mean it

creates hurdles to understand the code for any other

developer or the software engineer”.

“If there is no proper documentation then others

cannot understand the software neither can change nor

modify it”.

Results of Survey

The results of the survey are presented in the form of pie charts. The percentages of

population selected a specific scales are presented in Figure 2 to 10.

The pie chart of attribute flexibility shows a concentrated data at scale four

(agree) and five (strongly agree). It shows a consensus that flexibility is one of the

attribute of reusability.

Fazal-e-Amin et.al /International Journal of Software Engineering and Computer Systems 3(2017) 43-70

51

Figure 2. Frequency distribution of the scales assigned to flexibility

Flexibility

Scale Confidence Interval

Strongly Disagree *0% - 7.69%

Disagree 3.42% - 13.24%

Neither Agree or Disagree *0% - 8.95%

Agree 45.09% - 54.91%

Strongly Agree 29.94% - 39.76%

* The lower limit being below zero is rounded to zero, following the guidelines

presented in (Beck, 2011).

The pie chart of scope coverage shows a less consensus of population that it is

an attribute of reusability. It is visible by the percentage of population opted for the

scale (disagree).

Identification and quantification of factors affecting reusability of open source software in reuse-intensive software development

52

Figure 3. Frequency distribution of the scales assigned to scope coverage

Scope Coverage

Scale Confidence Interval

Strongly Disagree *0% - 7.44%

Disagree 23.37% - 33.19%

Neither Agree or Disagree 8.22% - 18.04%

Agree 40.04% - 49.86%

Strongly Agree 6.20% - 16.02%

* The lower limit being below zero is rounded to zero, following the guidelines

presented in (Beck, 2011).

The pie chart of attribute portability shows a concentrated data at scale four

(agree) and five (strongly agree). It shows a consensus that portability is one of the

attribute of reusability.

Fazal-e-Amin et.al /International Journal of Software Engineering and Computer Systems 3(2017) 43-70

53

Figure 4. Frequency distribution of the scales assigned to portability

Portability

Scale Confidence Interval

Strongly Disagree *0% - 7.69%

Disagree 10.75% - 20.57%

Neither Agree or Disagree 2.67% - 12.49%

Agree 40.29% - 50.11%

Strongly Agree 23.88% - 33.70%

* The lower limit being below zero is rounded to zero, following the guidelines

presented in (Beck, 2011).

The pie chart of attribute maintainability shows a concentrated data at scale four

(agree) and five (strongly agree). It shows a consensus that maintainability is one of the

attribute of reusability.

Identification and quantification of factors affecting reusability of open source software in reuse-intensive software development

54

Figure 5. Frequency distribution of the scales assigned to maintainability

Maintainability

Scale Confidence Interval

Strongly Disagree *0% - 5.67%

Disagree 2.92% - 12.74%

Neither Agree or Disagree 13.78% - 23.60%

Agree 50.39% - 60.21%

Strongly Agree 12.51% - 22.33%

* The lower limit being below zero is rounded to zero, following the guidelines

presented in (Beck, 2011).

The pie chart of attribute variability shows that 30% of the population opted for

neither agree nor disagree. One of the possible reasons for this indecisiveness of

population is lack of knowledge about the variability.

Fazal-e-Amin et.al /International Journal of Software Engineering and Computer Systems 3(2017) 43-70

55

Figure 6. Frequency distribution of the scales assigned to variability

Variability

Scale Confidence Interval

Strongly Disagree *0% - 5.16%

Disagree 6.20% - 16.02%

Neither Agree or Disagree 24.64% - 34.46%

Agree 43.57% - 53.39%

Strongly Agree 5.70% - 15.52%

* The lower limit being below zero is rounded to zero, following the guidelines

presented in (Beck, 2011).

The pie chart of attribute understandability shows a concentrated data at scale

four (agree) and five (strongly agree). It shows a consensus that understandability is one

of the attribute of reusability.

Identification and quantification of factors affecting reusability of open source software in reuse-intensive software development

56

Figure 7. Frequency distribution of the scales assigned to understandability

Understandability

Scale Confidence Interval

Strongly Disagree *0% - 10.72%

Disagree 4.43% - %14.25

Neither Agree or Disagree 6.71% - %16.53

Agree 48.37% - %58.19

Strongly Agree 15.04% - 24.86%

* The lower limit being below zero is rounded to zero, following the guidelines

presented in (Beck, 2011).

The pie chart of documentation shows that a large number of populations opted

for scales; agree (31%) and strongly agree (31%) population that documentation is an

attribute of reusability. On the other hand, 24% of population opted for neither agree

nor disagree and 14% of population is having a disagreement that documentation affects

the reusability of software.

Fazal-e-Amin et.al /International Journal of Software Engineering and Computer Systems 3(2017) 43-70

57

Figure 8. Frequency distribution of the scales assigned to documentation

Documentation

Scale Confidence Interval

Strongly Disagree *0% - 5.16%

Disagree 9.23% - 19.05%

Neither Agree or Disagree 18.57% - 28.39%

Agree 25.90% - 35.72%

Strongly Agree 26.40% - 36.22%

* The lower limit being below zero is rounded to zero, following the guidelines

presented in (Beck, 2011).

The pie chart of attribute usage history shows a concentrated data at scale four

(agree) and five (strongly agree). It shows a consensus that usage history is one of the

attribute of reusability.

Identification and quantification of factors affecting reusability of open source software in reuse-intensive software development

58

Figure 9. Frequency distribution of the scales assigned to usage history

Usage History

Scale Confidence Interval

Strongly Disagree *0% - 7.44%

Disagree 5.44% - 15.26%

Neither Agree or Disagree 7.21% - 17.03%

Agree 41.05% - 50.87%

Strongly Agree 24.13% - 33.95%

* The lower limit being below zero is rounded to zero, following the guidelines

presented in (Beck, 2011).

The pie chart of reusability attribute stability shows concentrated data at scale

four (agree) and five (strongly agree). It shows a consensus that stability is one of the

attribute of reusability.

Fazal-e-Amin et.al /International Journal of Software Engineering and Computer Systems 3(2017) 43-70

59

Figure 10. Frequency distribution of the scales assigned to stability

Stability

Scale Confidence Interval

Strongly Disagree *0% - 5.16%

Disagree 10.24% - 20.06%

Neither Agree or Disagree 13.02% - 22.84%

Agree 43.07% - 52.89%

Strongly Agree 13.78% - 23.60%

* The lower limit being below zero is rounded to zero, following the guidelines

presented in (Beck, 2011).

Factors

F-1 Flexibility

It is defined as “the ease with which a system or component can be modified for use in

applications or environments other than those for which it was specifically designed”

(IEEE, 2010). In (Pohl, Böckle, & Linden, 2005; Sant'anna, Garcia, Chavez, Lucena, &

von Staa, 2003; Sharma, et al., 2009) ‘flexibility’ is considered as a factor affecting the

reusability of a component. In the context of an SPL, the flexibility characteristic is

necessary for a core asset as it is intended to be reused in the development of other

products.

Flexibility is related to reusability in two ways. First, it is the ability of a

component to be used in multiple configurations. Second, it is a necessary factor

concerning future requirements and enhancements.

Identification and quantification of factors affecting reusability of open source software in reuse-intensive software development

60

F-2 Maintainability

In (IEEE, 2010), maintainability is defined as “the ease with which a software system or

component can be modified to change or add capabilities, correct faults or defects,

improve performance or other attributes, or adapt to a changed environment”. Two

metrics, CC and MI, are used to measure maintainability.

Maintainability is related to reuse in terms of error tracking and debugging. If a

component is maintainable it is more likely to be reused. In cases where OSS

components are running on systems connected to another system then a bug is

particularly problematic. Sometimes debugging a component on one configuration may

not work on other configurations. On the other hand, in black box reuse, maintainability

is not considered a factor of reusability.

F-3 Portability

It is defined as “the ease with which a system or component can be transferred from one

hardware or software environment to another”. The portability of a component depends

on its independence, i.e. the ability of the component to perform its functionality

without external support. In a scenario where an open source component is used in SPL

development, the component should have the characteristic of portability. The

component, being a core asset, may be used in the development of another

product/family member within the product line/family.

Portability is considered a factor in the sense that a cohesive component is more

portable. A component having all the necessary information within it or having less

interaction with another module during its execution is more reusable. Again, in the

case of black box, portability is not a factor.

F-4 Scope Coverage

It is the factor that counts the number of features provided by the component from the

list of features in the SPL scope.

Another characteristic of the open source components explored is the extent of

their scope. A developer would prefer a component to cover as much of the

application’s functionality as possible. Size is a concern in large components as it often

means a high level of complexity and poor understandability. Furthermore, scope

coverage is important in situations where future enhancements have already been

envisioned, or where there is the likelihood that more features will be added in the

future.

F-5 Stability

Stability of a component refers to its quality of being error free. Here, the term

‘stability’ can be linked to ‘safety in numbers’, that is, a reasonable number of

developers has contributed to the component and, furthermore, a reasonable number

have used it. Stability is also related to the usage history of the component.

Fazal-e-Amin et.al /International Journal of Software Engineering and Computer Systems 3(2017) 43-70

61

F-6 Usage History

Usage history provides a hint about the usefulness of the component. Another side of

usage history is the maturity of the component. The component can be considered

mature if it is used in many applications. The use of a component in many applications

also reflects its quality of interoperability. It provides confidence to the potential user

that the component can be easily adapted. Another aspect of usage history is that the use

of a particular OSS in different applications provides an example of usage of a

component. This example can be effective for learning purposes.

F-7 Understandability

It is defined as “the ease with which a system can be comprehended at both the system-

organizational and detailed statement levels” (IEEE, 2010). In (Sant'anna, et al., 2003;

Washizaki, Yamamoto, & Fukazawa, 2003) ‘understandability’ is considered a factor of

reusability.

‘Understandability’ is related to the maintainability of a component; a

component that is easy to understand is easy to maintain. Understandability affects the

reliability of a component.

F-8 Variability

Software variability as defined in (Firesmith, 2003) is the “degree to which something

exists in multiple variants, each having the appropriate capabilities”. Variability of a

software component is related to its reuse as increased variability increases the

likelihood of reuse. The object-oriented variability mechanisms are reported in (Fazal-e-

Amin, A. K. Mahmood, & A. Oxley, 2011b). A comprehensive analysis of variability

mechanisms is presented in (Fazal-e-Amin, Ahmad Kamil Mahmood, & Alan Oxley,

2011a).

The two constructs of object oriented paradigm, namely abstract classes and

interfaces, support two variability mechanisms, which are ‘inheritance’ and

‘overloading’. These mechanisms facilitates the implementation of positive, negative,

optional and alternative types of variability (Fazal-e-Amin, et al., 2011a). Variability

can be introduced at class, method and attribute level by using these mechanisms

(Fazal-e-Amin, et al., 2011a). (Here the term ‘attribute’ refers to the data in an object-

program.) These mechanisms can support open scope variability at compile time (Fazal-

e-Amin, et al., 2011a).

The use of metrics is proposed in this paper as a measure of variability. The

abstractness metric computes the ratio of abstract classes and interfaces to the total

number of classes. It can be seen as an indirect measure of variability. So, the variability

capability of a package, or openness of a package towards variability, can be assessed

using the abstractness metric.

Variability affects understandability. Variability is also seen as the

configurability of a component, that it can be configured in multiple configurations.

Variability is also related to the scalability property of a component, that is, it can be

scaled up whenever required. An experiment with human subject is conducted to assess

the variability code assets in (Fazal-e-Amin, Ahmad Kamil Mahmood, & Alan Oxley,

2011c).

Identification and quantification of factors affecting reusability of open source software in reuse-intensive software development

62

F-9 Documentation

Documentation affects flexibility, understand-ability and reusability. The issue of

documentation is multifaceted. Usually, OSS comes without much documentation. OSS

is developed and contributed to by many developers. The number of developers may

reach up to thousands, as in case of Linux. The code size increases rapidly. It is very

difficult to analyse code without documentation.

Documentation is associated with understand-ability. The lack of

documentation, or poorly maintained documentation, hinders understand-ability.

Documentation also provides a record of a component; the component history can be

known by seeing the documentation.

Metrics

The following package level metrics are employed in this study. The package level

metrics differs from the class level metrics due to the difference in the nature of these

artefacts.

Abstractness (A)

The abstractness of a package is the ratio of the number of abstract classes and

interfaces to the total number of classes (Robert Cecil Martin & Martin, 2006). Its

domain is the set of real numbers [0, 1], where zero refers to a concrete package, i.e. the

absence of an abstract class or interface, and 1 refers to an abstract package, i.e. where

all of its classes are abstract.

A = Number of abstract classes & interfaces / Total number of classes

Cyclomatic Complexity (CC)

The cyclomatic complexity metric a measure of control structure complexity (Lincke &

Lowe, 2007). It counts the linear independent paths, i.e. the minimum number of parts

during the execution. It is measured on an absolute scale and its domain is the set of

integers [1, ∞).

Fan-in / Afferent Coupling

The metric ‘fan-in’ is related to the total number of external classes coupled to the

classes of the package. It counts the number of classes outside the package that refer to

a class of the given package (Lincke & Lowe, 2007). Each class is counted for one time

only. The value of the metric is zero if there is no external package that refers to the

classes of the given package. This metric is equivalent to afferent coupling. It is

measured on an absolute scale; its domain is the set of integers [0, ∞). A large value of

fan-in represents a high dependability of other packages on the given package.

Fan-out / Efferent Coupling

The metric ‘fan-out’ is related to the total number of external classes coupled to the

classes of the package. It counts the number of classes outside the package referenced

by a class of the given package (Lincke & Lowe, 2007). Fan-out is equivalent to

Fazal-e-Amin et.al /International Journal of Software Engineering and Computer Systems 3(2017) 43-70

63

efferent coupling. Each class is counted for one time only. The value of the metric is

zero if the package is not referring to any class of an external package. It is measured on

an absolute scale; its domain is the set of integers [0, ∞). A large value of fan-out

represents a high dependability of the package on other packages.

Instability (I)

The instability of a package is related to the total number of external classes coupled to

the classes of the package. (Robert C. Martin, 2009; Robert Cecil Martin & Martin,

2006). The instability of a package is the ratio of efferent coupling (fan-out) to the total

coupling (fan-out + fan-in). It is represented by ‘I’ and its domain is the set of integers

[0, 1).

I = Ce / (Ca + Ce) (eq. 1)

where Ce is efferent coupling

 Ca is afferent coupling

The instability metric is also an indicator of the resilience to change. The value

of 0 represents a stable package, i.e. a package that is little affected by change. The

value of 1 represents an unstable package, i.e. a package that is highly affected by

change.

Lines of Code (LOC)

This is a measure of the lines of source code (Fenton & Pfleeger, 1997). It indicates the

size of the entity. The size of the software affects its understandability. It is measured on

an absolute scale; its domain is the set of integers [0, ∞).

Lines of Comments

It is a measure of total number of comment lines in the package, measured on an

absolute scale and its domain is the set of integers [0, ∞). ‘Comments’ have a positive

effect on the understandability of a code asset.

Number of Classes or Interfaces

It is a measure of total number of classes in a package. The size of package affects the

understandability. The number of classes is measured on an absolute scale; its domain

is the set of integers [0, ∞).

Number of Methods (NOM)

This metric is introduced in (Li & Henry, 1993). It measures the number of methods

declared within the class. It is an indicator of the size of a class. It is measured on an

absolute scale; its domain is the set of integers [0, ∞).

Identification and quantification of factors affecting reusability of open source software in reuse-intensive software development

64

Maintainability Index

Maintainability index (MI) (Coleman, Lowther, & Oman, 1994) value is the

representative of the relative maintainability of the code (Laired & Brennan, 2006).

Maintainability index is calculated by making use of lines of code, CCabe complexity

metric and Halstead measures. The maintainability index is calculated by following

formula:

MI = 171 – 5.2 ln (aV) – 0.23 aV(g’) – 16.2 ln (aLOC) + 50 sin[(2.4 *perCM)1/2] (eq. 2)

Where

 aV = average Halstead volume per module

 aV(g’) = average extended cyclomatic complexity per module

 aLOC = average count of lines of code per module

perCM = average percent of lines of comments per module

Application of Metrics

In this section the results of an experiment are presented. This experiment is intended to

test the hypotheses formulated as a result of the interviews and survey. In this

experiment the hypotheses related to a ‘package level reusability attribute model’ are

tested. (The term ‘reusability attribute model’ is used for consistency with our earlier

work. In the context of this paper it is preferable to think of it as a reusability factor

model.) The values of reusability are calculated using the equations stated later in this

paper. Pearson’s correlation analysis is conducted using statistical software. The results

are presented in the form of scatter plots along with the correlation values between

‘reusability’ and its factors.

Table 3. Attribute, Sub-attribute and Metrics

Attribute Sub-attribute Metrics

Flexibility Instability I (Robert C. Martin, 2009; Robert

Cecil Martin & Martin, 2006)

Understand ability Comments, Size Number of classes, %comments,

LOC (Fenton & Pfleeger, 1997),

NOM (Li & Henry, 1993)

Portability Independence Fan-out (Lincke & Lowe, 2007)

Maintainability Complexity CC (Lincke & Lowe, 2007), MI

(Coleman, et al., 1994)

Variability Abstractness A (Robert Cecil Martin & Martin,

2006)

Fazal-e-Amin et.al /International Journal of Software Engineering and Computer Systems 3(2017) 43-70

65

Due to the space limitation detailed explanation of the metrics are provided in this

appendices.

Table 4. Pearson’s Correlation Values

DISCUSSIONS

At the outset of this research nine factors were identified as affecting reusability. We

will now discuss, in turn, each of these factors. The first factor identified as affecting

reusability is flexibility of the software. The survey results show a strong indication that

‘flexibility’ is one of the factors of reusability. The metrics shows that the strength of

correlation between flexibility and reusability is .789.

The second factor identified as affecting reusability is maintainability of the

software. The survey results show a strong indication that ‘maintainability’ is a factor of

reusability. The metrics show that the strength of correlation between maintainability

and reusability is .667.

The third factor identified as affecting reusability is portability of the software.

The survey results show that the population has little confidence that ‘portability’ is one

of the factors of reusability. The metrics show that the strength of correlation between

portability and reusability is .693.

The fourth factor identified as affecting reusability is scope coverage of the

software. The survey results show that there is some doubt as to whether or not ‘scope

coverage’ is a factor of reusability.

The fifth factor identified as affecting reusability is stability of the software. The

survey results point towards the importance of ‘stability’ as a factor of reusability in the

scenario studies in this research.

The sixth factor identified as affecting reusability is understandability of the

software. The survey results show that there is a strong indication that

‘understandability’ is a factor of reusability. The metrics show that the strength of

correlation between understandability and reusability is .417.

 Pearson's Correlations

Flexibility

Maintain-

ability Portability

Understan

d- ability Variability

Reusability Pearson

Correlation
.789** .667** .693** .417** .674**

Sig. (2-tailed) .000 .000 .000 .000 .000

N 77 77 77 77 77

 **. Correlation is significant at the 0.01 level (2-tailed).

Identification and quantification of factors affecting reusability of open source software in reuse-intensive software development

66

The seventh factor identified as affecting reusability is the usage history of the

software. The above mentioned empirical evidence points towards the importance of

‘usage history’ as a factor of reusability in the scenario studies in this research.

The eighth factor identified as affecting reusability is variability of the software.

The survey results show that there is a consensus that ‘variability’ is a factor of

reusability. The metrics show that the strength of correlation between variability and

reusability is .674.

The ninth factor identified as affecting reusability is documentation of the

software. The survey results show that there is a strong indication that ‘documentation’

is a factor of reusability.

Threats to Validity of Results

The validity of quantitative results is affected by type I and type II errors. Both of these

error types are related to the rejection or acceptance of the null hypothesis. In this

research study, a low value of probability is used, i.e. 0.01. This low level of the p-value

ensures that there is no type I or type II errors in the results.

The validity of qualitative research is of four types: descriptive, interpretive,

concurrent and theoretical. Descriptive validity is related to the reporting of events,

behaviors, settings, people, places and times (Sullivan, 2009). It is of little concern to

this study. Interpretive validity (Johnson & Christensen, 2011) is more of a concern to

this research. Whenever there is ambiguity, the transcriptions are reviewed by the

researcher to ensure the interpretive validity of the results. Furthermore, the findings of

the qualitative studies are provided to the respondents. This measure was taken to cater

for the possible apprehensions of respondents about the results. The respondents

verified the interpretations.

Theoretical validity (Sullivan, 2009) is maintained by comparing the findings of

this research study with contemporary studies. It can be safely said that the findings

presented in this study are in line with the available theory.

Concurrent validity (Basit, 2010) is exhibited by the fact that the qualitative data

is collected using five interviews. Similar patterns and trends are identified from the

collected data. The only findings that are reported are those which are concurrent, i.e.

extracted from multiple respondents.

Limitations

The approach presented in this paper is meant to be of use to software engineers etc.

The approach is applied on open source software to obtain the results. The findings are

specific to open source projects. The results are acquired by analysing the source code.

Therefore, the results may not comply with black-box reuse, i.e. in which the user has

no access to the source code of the project.

The metrics used to assess the factors are generic object oriented metrics.

However, the data set used in the statistical experiment consists of projects implemented

in Java. Therefore, any results obtained from using some other programming language

may differ from the results of this study.

Fazal-e-Amin et.al /International Journal of Software Engineering and Computer Systems 3(2017) 43-70

67

CONCLUSIONS

In this study, the factors affecting reusability of OSS in a reuse-intensive software

development environment have been identified. These factors include the following:

flexibility, understand-ability, maintainability, portability, scope-coverage, stability,

usage history, variability and documentation. A survey was conducted to ascertain the

relative rankings of these factors. The survey results show a high ranking for

understand-ability, flexibility, maintainability, documentation and usage history. The

statistical results of an experiment show a strong correlation between four of the five

factors, ‘understand-ability’ being the odd one out. Further studies are required in order

to identify new metrics that could be used in a similar experiment. The contributions of

this study are twofold, first as a demonstration of mixed method research in software

engineering. Second, the topic of reusability is revisited in the context of OSS and

reuse-intensive software development.

REFERENCES

Ågerfalk, P., Fitzgerald, B., Lings, B., Lundell, B., O’Brien, L., & Thiel, S. (2006).

Open Source in Software Product Line: An Inevitable Trajectory. Paper presented

at the 10th International Software Product Line Conference (SPLC '06).

Ågerfalk, P. J., Deverell, A., Fitzgerald, B., & Morgan, L. (2005). Assessing the Role of

Open Source Software in the European Secondary Software Sector: A Voice from

Industry. Paper presented at the First International Conference on Open Source

Systems, Genova.

Ahmed, F., Capretz, L. F., & Babar, M. A. (2008, July 28 2008-Aug. 1 2008). A Model

of Open Source Software-Based Product Line Development. Paper presented at

the Computer Software and Applications, 2008. COMPSAC '08. 32nd Annual

IEEE International.

Basit, T. N. (2010). Conducting Resaerch in Educational Contexts Continuum

International Publishing Group.

Beck, K. (2011). Confidence Intervals, 2011, from

http://www.doh.wa.gov/healthyyouth/technical/confidinterval.htm

Boxall, M. A. S., & Araban, S. (2004). Interface Metrics for Reusability Analysis of

Components. Paper presented at the Proceedings of the 2004 Australian Software

Engineering Conference.

Burgin, M., Lee, H. K., & Debnath, N. (2004, 8-10 Nov. 2004). Software technological

roles, usability, and reusability. Paper presented at the Proceedings of the 2004

IEEE International Conference on Information Reuse and Integration, IRI 2004.

Coleman, D., Lowther, B., & Oman, P. (1994). Using Metrics to Evaluate Software

System Maintainability Computer, 27(8), 44-49.

Easterbrook, S., Singer, J., Storey, M.-A., & Damian, D. (2008). Selecting Empirical

Methods for Software Engineering Research Guide to Advanced Empirical

Software Engineering (pp. 285-311).

Elo, S., & Kyngäs, H. (2008). The qualitative content analysis process. Journal of

Advanced Nursing, 62(1), 107-115. doi: 10.1111/j.1365-2648.2007.04569.x

http://www.doh.wa.gov/healthyyouth/technical/confidinterval.htm

Identification and quantification of factors affecting reusability of open source software in reuse-intensive software development

68

Fazal-e-Amin, Mahmood, A. K., & Oxley, A. (2011a). An analysis of object oriented

variability implementation mechanisms. SIGSOFT Softw. Eng. Notes, 36(1), 1-4.

doi: 10.1145/1921532.1921538

Fazal-e-Amin, Mahmood, A. K., & Oxley, A. (2011b). Mechanisms for managing

variability when implementing object oriented components. Paper presented at the

National Information Technology Symposium (NITS), King Saud University,

KSA.

Fazal-e-Amin, Mahmood, A. K., & Oxley, A. (2011c). Metrics Based Variability

Assessment of Code Assets In J. M. Zain, W. M. b. Wan Mohd & E. El-

Qawasmeh (Eds.), Software Engineering and Computer Systems (Vol. 181, pp.

66-75): Springer Berlin Heidelberg.

Fazal-e-Amin, Mahmood, A. K., & Oxley, A. (2011d). A Review of Software

Component Reusability Assessment Approaches. Research Journal of

Information Technology, 3(1), 1-10.

Fazal-e-Amin, Mahmood, A. K., & Oxley, A. (2011e, 25-28 Sept. 2011). Using open

source components in software product lines - An exploratory study. Paper

presented at the IEEE Conference on Open Systems (ICOS) 2011.

Fenton, N., & Pfleeger, S. (1997). Software Metrics: A Rigorous and Practical

Approach (2nd ed.): PWS Publishing Co.

Firesmith, D. (2003). Common Concepts Underlying Safety, Security, and

Survivability Engineering. Pittsburgh, PA, USA: Software Engineering Institute,

Carnegie Mellon University.

Frakes, W. B., & Kyo, K. (2005). Software reuse research: status and future. IEEE

Transactions on Software Engineering, 31(7), 529-536.

Gravetter, F. J., & Forzano, L. A. B. (2011). Research Methods for the Behavioral

Sciences (4th ed.): Cengage Learning.

Gray, D. E. (2009). Doing Research in the Real World (2nd ed.): SAGE Publication

Ltd.

Gui, G., & Scott, P. D. (2007). Ranking reusability of software components using

coupling metrics. Journal of Systems and Software, 80(9), 1450-1459. doi:

http://dx.doi.org/10.1016/j.jss.2006.09.048

Gui, G., & Scott, P. D. (2008, 18-21 Nov. 2008). New Coupling and Cohesion Metrics

for Evaluation of Software Component Reusability. Paper presented at the The 9th

International Conference for Young Computer Scientists, 2008. ICYCS 2008. .

Harman, M. (2010, 12-13 Sept. 2010). Why Source Code Analysis and Manipulation

Will Always be Important. Paper presented at the Source Code Analysis and

Manipulation (SCAM), 2010 10th IEEE Working Conference on.

Höst, M., Oručević-Alagić, A., & Runeson, P. (2011). Usage of Open Source in

Commercial Software Product Development – Findings from a Focus Group

Meeting. In D. Caivano, M. Oivo, M. Baldassarre & G. Visaggio (Eds.), Product-

Focused Software Process Improvement (Vol. 6759, pp. 143-155): Springer

Berlin / Heidelberg.

Howe, C. (2000). Open Source Cracks The Code: Forrester Research.

Hsieh, H.-F., & Shannon, S. E. (2005). Three Approaches to Qualitative Content

Analysis. Qualitative Health Research, 15(9), 1277-1288.

Hummel, O., Janjic, W., & Atkinson, C. (2008). Code Conjurer: Pulling Reusable

Software out of Thin Air. IEEE Software, 25(5), 45-52.

http://dx.doi.org/10.1016/j.jss.2006.09.048

Fazal-e-Amin et.al /International Journal of Software Engineering and Computer Systems 3(2017) 43-70

69

IEEE. (2010). Systems and Software Engineering Vocabulary ISO/IEC/IEEE

24765:2010 (pp. 1-418).

Johnson, B., & Christensen, L. (2011). Educational Resaerch : Quantitative,

Qualitative, and Mixed Approaches (4th ed.): Sage Publication, Inc.

Kenwood, C. A. (2001). A Business Case Study of Open Source Software: The MITRE

Corporation.

Krippendorff, K. (2004). Content analysis: an introduction to its methodology (2nd ed.):

Sage.

Krishnamurthy, S. (2003). A Managerial Overview of Open Source Software. Business

Horizons, September-October 2003.

Laired, L. M., & Brennan, M. C. (2006). Software Measurement and Estimation : A

Practical Approach: John Wiley & Sons, Inc.

Lazaro, M., & Marcos, E. (2006). An Approach to the Integration of Qualitative and

Quantitative Research Methods in Software Engineering Research. Paper

presented at the 2nd International Workshop on Philosophical Foundations of

Information Systems Engineering (PHISE’06).

Leech, N., & Onwuegbuzie, A. (2009). A typology of mixed methods research designs.

Quality & Quantity, 43(2), 265-275. doi: 10.1007/s11135-007-9105-3

Li, W., & Henry, S. (1993, 21-22 May 1993). Maintenance metrics for the object

oriented paradigm. Paper presented at the Proceedings of First International

Software Metrics Symposium, 1993.

Lincke, R., & Lowe, W. (2007). Compendium of Software Quality Standards and

Metrics - Version 1.0.

Linden, F., Schmid, K., & Rommes, E. (2007). Software Product Lines in Action: The

Best Industrial Practice in Product Line Engineering: Springer-Verlag Berlin

Heidelberg.

Linden, F. v. d., Lundell, B., & Marttiin, P. (2009). Commodification of Industrial

Software: A Case for Open Source. IEEE Software, 26(4), 77-83. doi:

10.1109/ms.2009.88

Martin, R. C. (2009). Clean Code: Pearson Education, Inc.

Martin, R. C., & Martin, M. (2006). Agile Principles, Patterns, and Practices in C#:

Prentice Hall.

Niemi, T., Tuisku, M., Hameri, A.-p., & Curtin, T. (2009). Server-Based Computing

Solution Based on Open Source Software. Information Systems Management,

26(1), 77-86. doi: 10.1080/10580530802552227

Pohl, K., Böckle, G., & Linden, F. v. d. (2005). Software Product Line Engineering

Foundations, Principles, and Techniques: Springer-Verlag Berlin Heidelberg.

Punch, K. F. (2009). Introduction to Research Methods in Education Sage Publications

Ltd.

Samadi, S., Almaeh, N., Wolfe, R., Olding, S., & Isaac, D. (2004, 20-24 Sept. 2004).

Strategies for enabling software reuse within the Earth Science Community. Paper

presented at the Proceedings of IEEE International Geoscience and Remote

Sensing Symposium, 2004. IGARSS '04. .

Sant'anna, C., Garcia, A., Chavez, C., Lucena, C., & von Staa, A. (2003). On the Reuse

and Maintenance of Aspect-Oriented Software: An Assessment Framework. Paper

presented at the Proceedings XVII Brazilian Symposium on Software

Engineering.

Identification and quantification of factors affecting reusability of open source software in reuse-intensive software development

70

Sharma, A., Grover, P. S., & Kumar, R. (2009). Reusability assessment for software

components. SIGSOFT Softw. Eng. Notes, 34(2), 1-6. doi:

http://doi.acm.org/10.1145/1507195.1507215

Sommerville, I. (2007). Software Engineering (8th ed.): Addison-Wesley.

Stafford, J. (2006). Time to plan your company’s escape from Microsoft.

SearchExchange.com Retrieved 01 June 2011, from

http://searchenterpriselinux.techtarget.com/news/1163576/2006-Time-to-plan-

your-companys-escape-from-Microsoft

Sullivan, L. E. (2009). The SAGE Glossary of the Social and Behavioral Sciences: Sage

Publications, Inc.

Tashakkori, A., & Teddlie, C. (1998). Mixed Methodology Combining Qualitative and

Quantitative Approaches: SAGE Publications, Inc.

Washizaki, H., Yamamoto, H., & Fukazawa, Y. (2003). A Metrics Suite for Measuring

Reusability of Software Components. Paper presented at the Proceedings of the

9th International Symposium on Software Metrics.

Wasserman, A. (2011). How the Internet transformed the software industry. Journal of

Internet Services and Applications, 2(1), 11-22. doi: 10.1007/s13174-011-0019-x

Wheeler, D. A. (2005). Why Open Source Software / Free Software (OSS/FS, FLOSS,

or FOSS)? Look at the Numbers! Retrieved 01 June, 2011, from

http://www.dwheeler.com/oss_fs_why.html

Wood, M., Daly, J., Miller, J., & Roper, M. (1999). Multi-method research: An

empirical investigation of object-oriented technology. Journal of Systems and

Software, 48(1), 13-26.

Yoonjung, C., Sungwook, L., Houp, S., Jingoo, P., & SunHee, K. (2008, 17-20 Feb.

2008). Practical S/W Component Quality Evaluation Model. Paper presented at

the 10th International Conference on Advanced Communication Technology,

2008. ICACT 2008. .

http://doi.acm.org/10.1145/1507195.1507215
http://searchenterpriselinux.techtarget.com/news/1163576/2006-Time-to-plan-your-companys-escape-from-Microsoft
http://searchenterpriselinux.techtarget.com/news/1163576/2006-Time-to-plan-your-companys-escape-from-Microsoft
http://www.dwheeler.com/oss_fs_why.html

